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Drei unabhingige Molekiile in der Elementarzelle
eines Phosphor-Ylids; Anderungen der
Molekiilgeometrie bei der Rotation um die
Phosphor-Kohlenstoff- Ylidbindung **

Von Hansjérg Griitzmacher* und Hans Pritzkow

Die n-Wechselwirkung zwischen Phosphoratom und ylidi-
schem Kohlenstoffatom in einem Phosphor-Ylid wird durch
negative Hyperkonjugation beschrieben!*!. Durch diese Wech-
selwirkung wird Elektronendichte aus dem besetzten p-Orbi-
tal am Kohlenstoffatom in die unbesetzten o*-Orbitale der
Phosphor-Ligand(L,X)-Bindungen bertragen (Schema 1);
d-Orbitale am Phosphor haben nur eine polarisierende
Funktion'2). Die ekliptisch zu dem p-Orbital am Kohlenstoff
angeordnete Phosphor-Ligand-Bindung P-X wird geschwécht
und folglich verlingert; der zugehérige X-P-C-Winkel wird

[*1 H. Griitzmacher, H. Pritzkow
Anorganisch-chemisches Institut der Universitit
Im Neuenheimer Feld 270, W-6900 Heidelberg
[**] Diese Arbeit wurde von Prof. W. Sundermeyer, Prof. G. Huttner, der
Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Indu-
strie und der Dr.-Otto-Rohm-Gedachtnissliftung gefordert.

92 {3 VCH Verlagsgesellschaft mbH, W-6940 Weinkeim, 1992

aufgeweitet. Das ylidische Kohlenstoffatom ist pyramidal
konfiguriert und die Substituenten am Phosphor- und Koh-
lenstoffatom, die in der x,y-Ebene liegen, nehmen beziiglich
der P-C(Ylid)-Bindung eine frans-gewinkelte Konformation
ein'®. Diese theoretisch vorhergesagten Strukturmerkmale
finden sich in den Yliden 1141, 2[5! ynd 3!, die in grund-
legenden Arbeiten von Schmidbaur et al. bestimmt wurden
(Schema 1).

Ph\PJ Ph\ p iPr\

PR
Ph
Ph 1 Ph 2 iPr 3
Br Mes
si
\ &g iS———=SiMe,
P-———’/Mez\/
Me "
Me a
Schema 1.

In Phosphor-Yliden des Typs R,XP®-CR° (X = Halo-
gen; R.R’" = Alkyl, Aryl)!"! sollten sich die angefiihrten struk-
turellen Charakteristika gut beobachten lassen, weil das o*-
Orbital der P-Halogen-Bindung energetisch niedrig liegt und
die Elektronendichte am ylidischen Kohlenstoffatom beson-
ders gut aufnehmen kann. Im bromierten Phosphor-Ylid 4
konnten Fritz, von Schnering et al. tatsdchlich eine drama-
tisch erniedrigte Bindungsordnung der P-Br-Bindung (0.63)
nachweisen®!. Wir berichten in diesem Beitrag {iber weitere
eindeutige experimentelle Befunde, die durch negative Hyper-
konjugation in Phosphor-Yliden erklirt werden kénnen.

Das chlorierte Phosphor-Ylid 5% kristallisiert aus n-He-
xan in Form gelber Kristalle mit drei unabhéngigen Molekil-
len 5a,b und ¢ in der Elementarzelle!'®). Im wesentlichen
unterscheiden sich 5a—c durch die Torsion um die P-C(Ylid)-
Bindung und den P-Cl-Abstand, wobei diese Merkmale in
einem direkten Zusammenhang zueinander stehen (Abb. 1).
In Scist das p-Orbital an Clc, das senkrecht zur C4c-Clc-
C5c-Ebene steht, nahezu ekliptisch zur P-Cl-Bindung (Ab-
weichung 7.2°) angeordnet. Der P-Cl-Abstand in 5S¢
(2.235 A; Tabelle 1) ist der lingste in den drei Molekiilen

Tabelle 1. Ausgewiihlte Abstinde [A] und Winkel [°] von 5a, b, ¢ und 6b.

523 5b 5¢ 6b

P1-Cl1 [a] 2.195(2) 2.228(2) 223502) -

P1-C1 1.673(5) 1.667(5) 1.668(5)  1.683(11)
P1-C2 1.883(5) 1.874(5) 1.886(5)  1.836(13)
P3-C3 1.881(5) 1.870(5) 1.884(5)  1.896(13)
CH-P1-C1 116.5(1) 115.9(1) 117.5(1) -
Cl1-P1-C1-C4 60.1 703 722 -
CI{-P1-C1-C5  —1029 ~921 —86.7 -

X [b} ~0.45 —0.45 —0.45 0.03
Y[c] 0.12 0.13 0.15 0.02

[a] In keinem der Molekiile werden Temperaturfaktoren fiir P1 und CI1 unge-
wohnlicher oder unterschiedlicher GrioBenordnung gefunden. [b] Abstand von
P1 von der Ebene C1-C2-C3. [c] Abstand von C1 von der Ebene P1-C4-C5.
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Abb. 1. Oben: Auftragung der Torsionswinkel a Cl11-P1-C1-C4 und Cl1-P1-
C1-C5 [°] gegen den Cl1-P1-Abstand [A]; unten: Ansicht der Molekiilstruktu-
ren im Kristall von 5a, 5bund Scin Richtung der C1-P1-Bindung; ausgewihlte
Bindungsldngen und -winkel in Tabelle 1.

Sa—c und entspricht einer Bindungsordnung von nur 0.58
nach Donnay und Allmann!!). In 5a ist die Abweichung
von der ekliptischen Stellung am groBten (21.4°) und der
P-Cl-Abstand am kiirzesten. Die oben beschriebene trans-
Winkelung der Substituenten an P1 und C1 nimmt gleichsin-
nig mit dem P-Cl-Abstand und der Anndherung an eine
ekliptische Stellung des p-Orbitals an C1 und der P-Cl-
Bindung zu. Die Molekiile Sa—¢ entsprechen Zustidnden auf
der Energichyperfliche fiir die Rotation um die P-C(Ylid)-
Bindung. Thre experimentell bestimmten Bindungsparameter
geben AufschluBl iiber Anderungen der Molekiilgeometrie
im Verlauf dieses dynamischen Prozesses und sind in Ein-
klang mit dem Konzept der negativen Hyperkonjugation.
Die Schwichung der P-Cl-Bindung fithrt dazu, daB bereits
mit einer relativ schwachen Lewis-Sdure wie Zinndichlorid

Schema 2. a)k =73x10"*s7", ,,, = 16 min.
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aus dem Phosphor-Ylid 5 ein Chlorid-Ion abstrahiert wer-
den kann. Das nur mit Kohlenwasserstoffresten substituierte
Methylenphosphonium-Ton 6a kann nach schnellem Aufar-
beiten der Reaktionslosung als gelber Feststoff isoliert wer-
den (Schema 2). Analysenrein wurde 6b mit AICI; als Ge-
genanion isoliert und durch NMR-Spektren und eine Ein-
kristall-Réntgenstrukturanalyse'! % (Abb. 2) charakterisiert.

Abb. 2. Molekilstruktur des Methylenphosphonium-Kations 6b im Kristall;
ausgewihlie Bindungsidngen und -winkel in Tabelle 1.

Der P1-C1-Abstand in 6b (1.683 A) entspricht demjenigen
im Y1id 5 (1.666 A) und ist vergleichbar mit den P-C-Abstédn-
den in Methylenphosphanen RP = CR,!"31. Die Verlinge-
rung des P1-C1-Abstands in 6b gegeniiber dem theoretisch
errechneten (1.624 A'#)) ist der sterischen Belastung zuzu-
schreiben, die auch zu einer Torsion von 20° um die P1-C1-
Bindung fithrt. Sowohl das Kohlenstoffatom C1 als auch das
Phosphoratom P1 sind nahezu trigonal-planar konfiguriert
[Z°(C1) = 359.6°; Z°(P1) = 359°].

Das Methylenphosphonium-Salz 6a ist in Losung nicht
stabil (Schema 2). Es zerfillt nach dem Geschwindigkeitsge-
setzerster Ordnung (k =7.3x107*s™!; 1,,, =16 min) quan-
titativ zu dem unseres Wissens noch nicht beschriebenen Me-
thylenphosphan 7, tBuCl und SnCl,.

Das Methylenphosphan 7 ist ein bei tiefen Temperaturen
einige Zeit haltbares, gelbliches 01, das NMR-spektrosko-
pisch charakterisiert wurde. Bei Raumtemperatur dimerisiert
es auch in Losung zu dem 1,3-Diphosphetan 8. Bei dieser neu-
artigen Reaktion von 5 mit SnCl, handelt es sich um die erste
katalytische Herstellung von Methylenphosphanen, die we-
gen der leichten Verfiigbarkeit von P-Halogen-Phosphor-
Yliden priparativ interessant ist. Studien zum molekularen
Ablauf und der Anwendungsbreite dieser Reaktion, in der
Methylenphosphonium-Ionen!! 3! eine Schliisselrolle spielen,
werden derzeit durchgefiihrt.

Experimentelles

1.73 g (5 mmol) 5 werden in 15 mL wasserfreiem und entgastem CH,Cl, geldst
und mit einer Spritze zu einer Suspension von 0.8 g (6 mmol) AIC; in 10 mL
CH,Cl, bei —78 °C getropft. Die entstandene gelbe Losung wird sofort ohne
Erwirmen abfiltriert und im Vakuum zur Trockene eingeengt. Der gelbe feste
Riickstand wird in 20 mL n-Hexan suspendiert und durch Zugabe von CH,Cl,
(~ 20 mL) gelost. Bei —30 °C kristallisiert 6b in langen gelben Nadeln. In
Lésung ist 6b auBerordentlich empfindlich! 6b: Fp =108-109 °C; *'P{'H}-
NMR (CD,CL,): § =183.5; ‘H-NMR (CD,Cl,): § =1.52 (d, *J('P, 'H) =
19.1 Hz, 18H, CH,), 7.24-7.64 (m, 10 H, aromat. H); "*C-NMR (CD,Cl,):
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=315 (s, CH,), 49.9 (d, "JC'P, 1°C) = 9.0 Hz, CCH,), 129.5 (s, meta-C),
131.5 (d, 7 (', 13C) =15.1 Hz, ortho-C), 134.9 (s, para-C), 139.4 (d, 2J (*'P,
13C) =7.4 Hz, ipso-C), 178.1 (d, 'J (*'P, 13C) =73.6 Hz, P=C). 7: ¥'P{*H}-
NMR (CD,CL,): 6 = 289.6; 'H-NMR (CDCL,): 6 =1.01 (d, 37 (*'P, 'H) =
10.7 Hz, 9H, CH,), 7.02—7.44 (m, 10 H, aromat. H); 3C-NMR (CD,Cl,): 6 =
30.6(d, 27(*P, 1°C) =12.5 Hz, CH,), 35.8 (d, 'J(*P, 13C) = 42.2 Hz, CCH.),
126.6-130.5 (m, aromat. C), 143.7 (d, 2J (3!P, '3C) =13.1 Hz, ipso-C), 145.5
(d, 27 (1P, 13C) = 22.6 Hz, ipso-C), 192.8 (d, 1J (*'P, *°C) = 51.1 Hz, P=C). -
8: Fp = 137138 °C; 'P{'H}-NMR (CD,Cl,): 5 = 30.1; "H-NMR (CD,CL,):
5= 099 (d, *J ('P, 'H) —7.1 Hz, 9H, CH.,), 1.03 (d, *J('PIH) — 6.8 Hz,
9H, CH,), 6.59—8.22 (m, 10H, aromat. H); '>C-NMR (CD,CL,):  — 30.5 (d,
27 (31p, 13C) = 9.9 Hz, CH,), 30.7 (d, 2/ (*'P, 3C) = 9.9 Hz, CH,), 33.2(d, \J
('P, 13C) =15.1 Hz, CCHS,), 33.5 (d, 'J (*'P, 13C) = 14.6 Hz, CCH,), 67.4 (t,
17('P, C) = 8.3Hz, C,,,)). 125.8 (d, %/ C'P, '3C) =19.2 Hz, ortho-C), 126.4
(s, aromat, C), 127.5 (d, 3J (3*P, '3C) = 34.6 Hz, ortho-C), 131.2 (m, aromat.
C), 132.5 (s (breit), aromat. C), 142.3 (s, aromat. C), 146.6 (d, 2J(*'P, *3¢) =
11.4 Hz, ipso-C), 146.9 (d, 2J (**P, 3C) =13.2 Hz, ipso-C).

Eingegangen am 30. Juli 1991 {Z 4838]
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83-7.
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Ungewohnliche Koordination des
1,3-Diphosphacyclobutadiens (;Pr,NCP),
an zwei [Ni(CO),]-Komplexfragmente **

Von Joseph Grobe*, Duc Le Van, Marianne Hegemann,
Bernt Krebs und Mechthild Lage

Die Chemie der Phosphaalkine RC=P steckt, wie Untersu-
chungen der letzten Jahre gezeigt haben, voller Uberraschun-
gen!'l. So haben insbesondere Reaktivitétsstudien mit fert-
Butylphosphaethin viele neue Aspekte in die Organophos-
phor- und Komplexchemie eingebracht!®). Bisher nur wenig
untersucht sind Phosphaalkinderivate mit Donor- oder Ac-
ceptorsubstituenten' ' *!, Wir berichten hier iiber eine uner-
wartete Reaktion des vor kurzem erstmals hergestellten Di-
(isopropyl)aminophosphaethins™! {Pr,NC=P 1 mit Tetra-
carbonylnickel.

Beim Eintropfen von 1 in eine Losung von [Ni(CO),] in
Ether entsteht unter Abspaltung von CO als einziges Produkt
(IR-Kontrolle wihrend, NMR-Kontrolle unmittelbar nach
der Umsetzung) der Komplex 2, der zwei [Ni(CO),}-Grup-
pen an einem der beiden Phosphoratome des 1,3-Diphos-
phacyclobutadienringes (iPr,NCP), enthilt.

2 iPr,N-C=P + 2 [Ni(CO),] f"T;CO» [(CO),Ni{n'-1,-(iPr,NCP),}Ni(CO),]

1 2

Zusammensetzung und Konstitution der in rubinroten
Kristallen anfallenden Verbindung 2 wurden durch Elemen-
taranalyse, IR-, 'H-, 13C- und *'P-NMR-Spektren sowie
durch eine Rontgenstrukturanalyse gesichert. Die Isopropyl-
gruppen sind in den 'H- und '*C-NMR-Spektren nicht dqui-
valent, und die Spektren deuten eine Hinderung der Rotation
der R,N-Gruppe um die P-C—N-Bindung an. Die sp-hybri-
disierten C-Atome des cyclischen Phosphorliganden sind
magnetisch dquivalent; eine der beiden 'J(P, sp2-C)-Kopp-
lungen betriigt nur 3.8 Hz. Im 3'P-NMR-Spektrum werden
zwei Signale (6 =106.3 und 94.2) gleicher Intensitit registriert,
wobei die 2J(P,P)-Kopplung bemerkenswert klein ist (9.0 Hz).
Die CO-Valenzbanden von 2 weisen um ca. 30 cm ™! héhere
Wellenzahlen auf als die der Phosphanido-verbriickten Car-
bonylnickelkomplexe [(CO),Ni(r*-u,-PR,)Ni(CO),]° ! und
sind am ehesten mit den CO-Absorptionen einer Tricarbo-
nylnickel-Phosphaallen-Verbindung vergleichbar!s!.

Die wichtigsten Informationen zur ungewdhnlichen Ver-
bindung 2 liefert die Kristallstrukturanalyse!”. Sie zeigt in
Ubereinstimmung mit den NMR- und IR-Daten, daB beide
[Ni(CO),]-Fragmente an eines der beiden P-Atome gebun-
den sind (Abb. 1). Im Herzstiick des Molekiils —[C,NCP],—
liegen alle zehn Geriistatome in einer Ebene (mittlere Abwei-
chung: 0.059 A). Dieser Befund weist auf ein weitgehend
delokalisiertes Elektronensystem hin. Die Abstinde P1-C1
und P1-C2 sind nahezu gleich grof3 und entsprechen P-C-
Einfachbindungslingen (1.85 A). Dagegen resultiert aus den
praktisch identischen Abstinden P2-C1 und P2-C2 (1.784
bzw. 1.783 A) eine Bindungsordnung groBer 1. Die Beteili-
gung der freien FElektronenpaare der beiden iPr,N-Substituen-
ten an der Mesomerie wird sowohl durch die planare Umge-
bung als auch durch die starke Verkiirzung der C1-N1- und
C2-N2-Bindungen (1.304 bzw. 1.308 A) bestiitigt. Die Abstin-
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